Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 343: 122555, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460811

RESUMO

AIMS: Ferroptosis, a novel mode of cell death characterized by lipid peroxidation and oxidative stress, plays an important role in the pathogenesis of preeclampsia (PE). The aim of this study is to determine the role of Nox2 in the ferroptosis of trophoblast cells, along with the underlying mechanisms. METHODS: The mRNA and protein levels of Nox2, STAT3, and GPX4 in placental tissues and trophoblast cells were respectively detected by qRT-PCR and western blot analysis. CCK8, transwell invasion and tube formation assays were used to evaluate the function of trophoblast cells. Ferroptosis was evaluated using flow cytometry and the lipid peroxidation assay. Glycolysis and mitochondrial respiration were investigated by detecting the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) using Seahorse extracellular flux technology. The t-test or one-way ANOVA was used for statistical analysis. KEY FINDINGS: Nox2 was up-regulated while STAT3 and GPX4 were down-regulated in PE placental tissues. Nox2 knockdown inhibited ferroptosis in trophoblast cells, which was shown by enhanced proliferation and invasion, decreased ROS and lipid peroxide levels, and reduced glycolysis and mitochondrial dysfunction. Nox2 negatively correlated with MVD in PE placentas, and Nox2 knockdown restored ferroptosis-inhibited tube formation. Nox2 could interact with STAT3. Inhibiting Nox2 restored ferroptosis-induced alterations in the mRNA and protein levels of STAT3 and GPX4. SIGNIFICANCE: Nox2 may trigger ferroptosis through the STAT3/GPX4 pathway, subsequently leading to regulation of mitochondrial respiration, transition of glycolysis, and inhibition of placental angiogenesis. Therefore, targeted inhibition of Nox2 is expected to become a new therapeutic target for PE.


Assuntos
Ferroptose , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Linhagem Celular , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Trofoblastos/metabolismo
2.
Bioorg Med Chem ; 87: 117316, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37187077

RESUMO

In this paper, a series of peptidomimetic SARS-CoV-2 3CL protease inhibitors with new P2 and P4 positions were synthesized and evaluated. Among these compounds, 1a and 2b exhibited obvious 3CLpro inhibitory activities with IC50 of 18.06 nM and 22.42 nM, respectively. 1a and 2b also showed excellent antiviral activities against SARS-CoV-2 in vitro with EC50 of 313.0 nM and 170.2 nM, respectively, the antiviral activities of 1a and 2b were 2- and 4-fold better than that of nirmatrelvir, respectively. In vitro studies revealed that these two compounds had no significant cytotoxicity. Further metabolic stability tests and pharmacokinetic studies showed that the metabolic stability of 1a and 2b in liver microsomes was significantly improved, and 2b had similar pharmacokinetic parameters to that of nirmatrelvir in mice.


Assuntos
COVID-19 , Peptidomiméticos , Animais , Camundongos , Inibidores de Proteases/farmacologia , Peptidomiméticos/farmacologia , SARS-CoV-2 , Nitrilas , Antivirais/farmacologia
3.
Eur J Med Chem ; 257: 115512, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37253309

RESUMO

A series of peptidomimetic compounds containing benzothiazolyl ketone and [2.2.1] azabicyclic ring was designed, synthesized and evaluated in the hope of obtaining potent oral 3CLpro inhibitors with improved pharmacokinetic properties. Among the target compounds, 11b had the best enzymatic potency (IC50 = 0.110 µM) and 11e had the best microsomal stability (t1/2 > 120 min) and good enzyme activity (IC50 = 0.868 µM). Therefore, compounds 11b and 11e were chosen for further evaluation of pharmacokinetics in ICR mice. The results exhibited that the AUC(0-t) of 11e was 5143 h*ng/mL following single-dose oral administration of 20 mg/kg, and the F was 67.98%. Further structural modification was made to obtain compounds 11g-11j based on 11e. Among them, 11j exhibited the best enzyme inhibition activity against SARS-CoV-2 3CLpro (IC50 = 1.646 µM), the AUC(0-t) was 32473 h*ng/mL (20 mg/kg, po), and the F was 48.1%. In addition, 11j displayed significant anti-SARS-CoV-2 activity (EC50 = 0.18 µM) and low cytotoxicity (CC50 > 50 µM) in Vero E6 cells. All of the above results suggested that compound 11j was a promising lead compound in the development of oral 3CLpro inhibitors and deserved further research.


Assuntos
COVID-19 , Peptidomiméticos , Animais , Camundongos , Peptidomiméticos/farmacologia , Peptidomiméticos/química , SARS-CoV-2 , Inibidores de Proteases/química , Cetonas , Camundongos Endogâmicos ICR , Antivirais/química
4.
BMC Pregnancy Childbirth ; 23(1): 131, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859279

RESUMO

BACKGROUND: Preeclampsia (PE) is a complication of pregnancy that causes long-term adverse outcomes for the mother and fetus and may even lead to death. Oxidative stress caused by the imbalance of oxidants and antioxidants in the placenta has been considered as one of the key mechanisms of preeclampsia (together with inflammation, etc.), in which the placental mitochondria play an important role. The expression of hypoxia-inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF) is known to be increased in patients with PE. Mitochondrial ferritin (FtMt) is known to protect the mitochondria from oxidative stress, although its specific role in PE remains unclear. METHODS: We used qRT-PCR and western blotting to detect the expression levels of FtMt, HIF-1α, and VEGF in placental tissues from patients with PE. Human chorionic trophoblast cells were also administered with hypoxia treatment, followed by the detection of cell proliferation, invasion and angiogenic capacity by CCK8, Transwell, and endothelial cell angiogenesis assays; we also detected the expression of HIF-1α and VEGF in these cells. Finally, overexpression or inhibitory FtMt lentiviral vectors, along with negative control vectors, were constructed and transfected into hypoxia-treated human chorionic trophoblast cells; this was followed by analyses of cell function. RESULTS: The expression levels of FtMt, HIF-1α and VEGF in the PE group were higher than those in the control group (P < 0.05). Following hypoxia, there was an increase in the expression levels of HIF-1α and VEGF protein in trophoblast cells. There was also an increase in invasion ability and vascular formation ability along with a reduction in cell proliferation ability. These effects were reversed by transfecting cells with the knockout FtMt lentivirus vector. The differences were statistically significant. CONCLUSION: Analyses showed that FtMt plays a key role in the vascular regulation of PE trophoblast cells after hypoxia possibly acting via the HIF-1α/VEGF signaling pathway. These results provide us an enhanced understanding of the pathogenesis of PE and suggest that the HIF-1α/VEGF signaling pathway represents a new target for the treatment of PE.


Assuntos
Ferritinas , Proteínas Mitocondriais , Estresse Oxidativo , Pré-Eclâmpsia , Trofoblastos , Feminino , Humanos , Gravidez , Placenta , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Mitocondriais/metabolismo , Ferritinas/metabolismo
5.
ACS Omega ; 7(21): 17632-17640, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664616

RESUMO

The aim of this study was to modify the digestibility and structure of corn starch by treatment with compound enzymes. Corn starch was treated with two enzymes (α-amylase, which catalyzes hydrolysis, and branching enzyme, a transglycosidase that catalyzes branch formation), and the reaction was monitored by determining the content of slowly digestible starch in the reaction product. The fine structure and physical and chemical properties of enzyme-modified starch samples were analyzed using scanning electron microscopy, gel chromatography, and X-ray diffraction methods; modified starch has a high degree of branching, a high proportion of short-chain branched structures, and greatly improved solubility. The results show that the slow digestion performance of corn starch was significantly improved after hydrolysis by α-amylase for 4 h and treatment with branching enzyme for 6 h. These results show that enzymatic modification of corn starch can improve its slow digestibility properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...